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ABSTRACT
We consider a problem of mean value estimation for a normal distri-
bution with prior knowledge of its randomness and extreme small-
ness. We continue our investigation presented in article [Volodin
et al. Estimation of the mean value for the normal distribution with
constrains on d-risk. Lobachevskii J Math. 2018;39:377–387], where
the constraints have been made on the absolute estimation error.
It is more appropriate to control its relative estimation error, not
the absolute. In this article, we consider not only estimates based
on a fixed number of observations, but also the sequential proce-
dure of estimation. Both estimators guarantee the given constraints
on their d-risks (the so-called d-guarantee procedure). We present a
simple method for calculating the minimal sample size that guaran-
tees the given constraints on the d-risk of the relative error when the
estimators with uniformly minimal d-risk and Bayesian are applied.
A sequential guarantee estimation procedure is also proposed, and
the distribution of the corresponding stopping time is illustrated
by the results of statistical simulations. As a practical application of
the proposed statistical procedures, the problem of estimating the
concentration of arsenic in drinking water is considered.
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1. Introduction

Weconsider a typical statisticalQuality Control problemof percentage estimation for some
substance (contaminant or pollutant) in a product. The amount of this contaminant should
be within acceptable limits. If the production process is stable (under control), then, from
the Mathematical Statistics’ point of view, we are dealing with a sequence of statistical
experiments. In each of the experiments, the value of the corresponding parameter θ is
estimated. This parameter can be considered as an index for a family P = {Pθ , θ ∈ �} of
possible distributions of the random sample X on a measurable sample space (X ,A). It is
assumed that the corresponding sequence θ1, θ2, . . . of unknown (estimated) values of the
parameter θ in each statistical experiment can be interpreted as a value of the sequence
ϑ1,ϑ2, . . . of independent identically distributed random variables with distribution Gλ
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that belongs to a family G = {Gλ, λ ∈ �} of so-called prior distributions of the random
parameter ϑ .

It is natural to solve this statistical problem of θ estimation in the framework of the
Bayesian paradigm. Let L(θ , d), (θ , d) ∈ �2 be a loss function. It indicates some costs for a
statistician in the case where a decision d is accepted when the true value of θ is different
from d. The task of setting the risk function (the mean value of losses) is crucial for a solu-
tion of the statistical inference guarantee problem. Our new approach for an estimation
of the mean value of normal distribution is based on the Bayesian paradigm that was ini-
tially presented in article [1]. This is the so-called d-posterior approach to the problem of
statistical inference guarantee. Contrary to the classical approach, here the value of mean
losses under wrong decisions is calculated from experiments that have ended in the accep-
tance of the same decision d, instead of from statistical experiments with the same value of
the parameter of interest θ . Therefore, the solution of the guarantee problem is based on
the calculation of the d-risk function: the conditional mathematical expectation of the loss
function with respect to the σ -algebra generated by the decision function δ(X). Note that
in our case δ(X) is the estimate of the parameter itself.

If we assume that the prior distribution G is known, or we have its estimate from the
results of a real sequence of statistical experiments, then the prior risk of the statistical
procedure RG = EL(ϑ , δ(X)) (the mean value is calculated by the joint distribution of X
and ϑ) is too rough as a characteristic of the quality for the estimate δ(X). The natural
analogue of the risk function R(θ) = EθL(θ , δ(X)) for a solution of the guarantee problem
of statistical inference is the d-risk function

R(d) = E{L(ϑ , d) | δ(X) = d}, d ∈ �.

The function R(d) can be interpreted as the mean value of losses from the statistical
experiment that resulted in the acceptance of the same decision d ∈ D.

Therefore the guarantee estimation procedure is based not on the probability of devi-
ation of the estimate δ(X) from the true (unknown) value of the parameter θ , but on
the probability that for the completed observations, the value of the random parameter
ϑ is different from the decision made d = δ(x) (estimate of θ by the result x of random
sample X).

Let 	 be a constant that we use in order to control the relative error of our estimate. In
this article, the estimation problems of the mean value θ of a normal (θ , σ 2) distribution
is solved with the prior exponential distribution

G(θ) = 1 − exp{−λ(θ − θ0)}, θ > θ0, λ > 0

of the random parameter ϑ and loss function L(θ , d) = 0, if

1
1 + 	

<
ϑ

d
< 1 + 	,

and L(θ , d) = 1 otherwise. Such a loss function shows howmany times the decision made
is different from the true value of the parameter; that is, the loss function corresponds
to the relative error for θ estimation. A similar estimate has been considered in [2] with
a somewhat different loss function. The minimax estimation for θ has been constructed,
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and a formula for theminimal sample size is derived under the guarantee constraint on the
classical risk of the estimate.

Therefore, contrary to similar investigations presented in article [3], in the current inves-
tigation we assume that the true value of θ cannot be zero (the estimated contaminant is
always present in the product). If we assume that θ0 = 0, then the d-risk of the Bayesian
estimate becomes unbounded, which is typical for the problem of the guarantee estimation
with constraints on the relative error (in connection with this see articles [2,4]).

The article is organized in the following way. In the second section, a formula for the
posterior reliability of the estimate is derived. This is a more convenient approach than
the posterior risk for constructing an estimation procedure. The Bayesian estimate of θ

is also presented, and the algorithm for the estimate with a uniformly minimal d-risk is
established (see articles [5,6] for methods of constructing such estimates). It is essential in
our case that such an estimate possesses the d-minimax property. Consequently, it gives
the decision rule corresponding to the minimal sample size for which there is an estima-
tion procedure of θ with given constraints on the relative error and d-risk (for the proof
of such statements for different risk definitions of a statistical inference procedure we refer
to article [4]). The third section is devoted to the derivation of formulae for d-risks of the
Bayesian estimate, and the estimate with uniformly minimal d-risk. In the fourth section,
we suggest methods of calculating the minimal sample size required to obtain an estimate
with guarantee constraints on the absolute error and d-risk. In Section 5, a sequential pro-
cedure for the estimation of θ value is constructed and its properties are investigated by
the method of statistical simulation. Section 6 is devoted to the empirical estimate of prior
distribution parameters. In the same section, as an example of the θ estimation sequential
procedure, we consider the problem of estimating the concentration of arsenic in drinking
water. Parameters of the model are chosen in accordance with the State regulations for lab-
oratory testing of this ecologically important characteristic of drinking water. All formulae
obtained for characteristics of the estimation procedures are illustrated numerically and
graphically on exactly these parameters of the probability model.

2. Bayesian and uniformlyminimizing d-risk estimates of parameter θ

The probability model we are considering consists of a normal (θ , σ 2) distribution and an
exponential prior distribution with the rate parameter λ and shift parameter θ0. For this
model, the distribution family of the random sample X(n) = (X1, . . . ,Xn) possesses the
sufficient statistic

X = 1
n

n∑
k=1

Xk.

Therefore, the statistical model is reduced to the normal (θ , σ 2/n) distribution with the
density function

p(x | θ) =
√
n√

2πσ
exp

{
− n
2σ 2 (x − θ)2

}
, θ ∈ R, x ∈ R.

Prior exponential distribution is defined by the density function

g(θ) = λ exp{−λ(θ − θ0)}, θ ≥ θ0.
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The problem we are interested in solving consists of constructing a procedure (ν, θ̂ν) for
parameter θ estimation with the stopping time ν and decision function (estimate) θ̂ν . The
procedure should guarantee the given constraint on the relative error and d-risk of the
estimate:

sup
d≥θ0

P
(

(1 + 	)−1 ≤ ϑ

d
< 1 + 	 | θ̂ν = d

)
≥ 1 − β ,

where β ∈ (0, 1) is a given constant. It is assumed that the variance σ 2 and parameter λ are
known, or are estimated by the data archive in the framework of the empirical Bayesian
approach.

For the derivation of the posterior distribution, we note that the joint distribution of X
and ϑ has the density function

u(x, θ) = p(x | θ)g(θ) = λ
√
n√

2πσ
exp

{
− n
2σ 2 (x − θ)2 − λ(θ − θ0)

}
,

where x ∈ R, θ ≥ θ0.
The posterior distribution is defined as the conditional distribution of the random

parameter θ with respect to the sufficient statistic X; that is, it has the density function

h(θ | X) = p(X | θ)g(θ)∫ ∞
0 p(X | u)g(u) du .

In the framework of the declared probability model, the posterior density

h(θ | X) = exp{−n(X − θ)2/(2σ 2) − λ(θ − θ0)}∫ ∞
0 exp{−n(X − u)2/(2σ 2) − λ(u − θ0)} du

.

The marginal (unconditional) density function of the sample mean

pG(x) =
∫ ∞

θ0

p(x | θ)g(θ)dθ

= λ exp
{
− n
2σ 2 (x2 − t2) + λθ0

}
·

√
n√

2πσ

∫ ∞

θ0

exp
{
− n
2σ 2 (θ − t)2

}
dθ

= λ exp
{
− n
2σ 2 (x2 − t2) + λθ0

} [
1 − 

(
(θ0 − t)

√
n

σ

)]
, x ∈ R,

where t = x + λσ 2/n.
The density function of the posterior distribution ϑ is

h(θ | X) =
√
n√

2πσ
(
(T − θ0)

√
n/σ

) exp {
− n
2σ 2 (θ0 − T)2

}
, θ > θ0,

where T = X + λσ 2/n and (·) is the standard normal distribution function. Hence, the
posterior distribution of the random parameter ϑ is the normal (T, σ 2/n) distribution
truncated at the point θ0.
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Proposition 2.1: The Bayesian estimate of θ takes the form

θ̂n = θ̂n(T) = max{θ0(1 + 	), ân},
where

ân = ân(T) = T
(1 + 	) + (1 + 	)−1

+
√

T2

[(1 + 	) + (1 + 	)−1]2
+ 4σ 2 ln(1 + 	)

n[(1 + 	)2 − (1 + 	)−2]
. (1)

Proof: Construction of the Bayesian estimate is based on themaximization of the posterior
reliability function

H(a) = P
(

(1 + 	)−1 ≤ ϑ

d
< 1 + 	 | X

)
as a function of some decision d = a. Let

u1(a) = max{θ0, a/(1 + 	)}, u2(a) = max{θ0, a(1 + 	)}, (2)

and write its integral representation

H(a) =
∫ u2(a)

u1(a)
h(θ | X) dθ

=
√
n√

2πσ
(
(θ0 − T)

√
n/σ

) ∫ u2(a)

u1(a)
exp

{−(θ − T)2
}
dθ

= 
[
(u2(a) − T)

√
n/σ

] − 
[
(u1(a) − T)

√
n/σ

]


(
(T − θ0)

√
n/σ

) . (3)

For the Bayesian estimate, it is necessary to find the point where the maximum of the
posterior reliability function is achieved by a, or, which is the same, for the function

D(a) =
∫ u2(a)

u1(a)
exp

{−(θ − T)2
}
dθ , a > θ0.

Finding the point of themaximumof the posterior reliability is fulfilled by itsmaximization
in the following three regions of a-values.

If a/(1 + 	) < a(1 + 	) < θ0, then D(a) is obviously zero.
If a/(1 + 	) < θ0 < a(1 + 	), then

D(a) =
∫ a(1+	)

θ0

exp
{
− n
2σ 2 (θ − T)2

}
dθ ,

and, in this case, the maximum of D(a) is achieved at the point

â = max{a : a/(1 + 	) < θ0 < a(1 + 	)};
that is, a = θ0(1 + 	). Note that â can be the Bayesian estimate if T is sufficiently small (as
will be shown in what follows, this happens for T < θ0(1 + 	)).
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If, however θ0 < a(1 + 	)−1 < a(1 + 	), then the point of the maximum of the relia-
bility function is found by the method of differential calculus. Differentiating the function
D(a) by a and equating the expression obtained to zero:

dD(a)
da

= (1 + 	) exp
{
− n
2σ 2 (a(1 + 	) − T)2

}
− 1

1 + 	
exp

{
− n
2σ 2

(
a

1 + 	
− T

)2
}

= 0.

Elementary calculations reduce this equation to the form

a2
[
(1 + 	)2 − 1

(1 + 	)2

]
− 2aT

[
(1 + 	) − 1

1 + 	

]
− 4σ 2 ln(1 + 	)

n
= 0.

Its solution ân = ân(T) has the form (1).We choose the root of the quadratic equationwith
‘plus’ because a > θ0(1 + 	) > 0); and therefore, it gives the desired Bayesian estimate of
θ . The proposition is proved. �

Concerning the estimate with the uniformly minimal d-risk (the methods of construct-
ing such estimates are discussed in article [5]), it is impossible to write it in the closed form,
and we present only the algorithm of its numerical realization.

For this, consider the posterior reliability as a function of the value t of the statistic
T = T(X) and some decision a:

H(a, t) = 
[
(u2(a) − t)

√
n/σ

] − 
[
u1(a) − t)

√
n/σ

]


(
(t − θ0)

√
n/σ

) .

For each fixed value of a find the point t(a) of achieving the maximum by the variable t of
function H(a, t) and present the graph of the inverse function a = a(t), t ∈ R.

The statistic θ∗
n (X) = a(T(X)) serves as the estimate of θ with the uniformly minimal

d-risk. Therefore, if t = t(x) is the observed value of the statistic T(X), then the observed
value of the estimate θ∗

n (X) equals a(t(x)). It is easy to see that for each fixed value of a,
the functionH(a, t) has unique maximin and the function a = a(t), t ∈ R, monotonically
increases by t. Figure 1 provides graphs of the function a(·) for the values of the parame-
ters from the probability model for the example in Section 6. These graphical illustrations
and some additional numerical examinations of the function a(·) show that for sufficiently
small values of 	, the function is well approximated by the linear relation a(t) = t.

3. The d-risk function for the Bayesian and uniformity minimal d-risk
estimates of parameter θ

The d-risk functions of the estimates can be obtained relatively simply by the substitution
of these estimates into the posterior reliability H(a).
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Figure 1. Graphs for the construction of the uniformlyminimal d-risk estimates. (a)	 = 0.1, n = 2. (b)
	 = 0.2, n = 2.

Proposition 3.1: The d-risk function of the Bayesian estimate is defined for all d ≥ θ0
(1 + 	) and can be written as

RB(d) = 1 −
[


((
d2 − U2/n

2dV
− θ0

) √
n

σ

)]−1

×
[


((
(1 + 	)d − d2 − U2/n

2dV

) √
n

σ

)
− 

((
d

1 + 	
− d2 − U2/n

2dV

) √
n

σ

)]
,

where

V = [(1 + 	) + (1 + 	)−1]−1, U2 = 4σ 2 ln(1 + 	)

(1 + 	)2 − (1 + 	)−2 .

The d-risk function of the estimate with the uniformly minimal d-risk is defined for all values
d ∈ R and can be written as

RM(d) = 1 − 
[
(u2(d) − t(d))

√
n/σ

] − 
[
(u1(d) − t(d))

√
n/σ

]


(
(t(d) − θ0)

√
n/σ

) .

Proof: The d-risk function for the Bayesian estimate θ̂n(T) = max{θ0(1 + 	), ân} is
obtained by its substitution into the expression of the posterior reliability

Hn(T) = max
a∈R

H(a)

=
[


(
A − T

σ

√
n
)

− 

(
B − T

σ

√
n
)]

×
[


(
(T − θ0)

σ

√
n
)]−1

,

where

A = max{θ0, (1 + 	)max{θ0(1 + 	), ân}},
B = max{θ0, (1 + 	)−1 max{θ0(1 + 	), ân}}.
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Note that for ân ≤ θ0(1 + 	) the expression in the first square brackets has the form



(
θ0(1 + 	)2 − T

σ

√
n
)

− 

(
θ0 − T

σ

√
n
)
,

and for ân ≥ θ0(1 + 	)



(
(1 + 	)ân − T

σ

√
n
)

− 

(
ân/)1 + 	) − T

σ

√
n
)
.

Hence, the posterior reliability of the Bayesian estimate is defined only for the values of T
that satisfy the inequality ân ≥ θ0(1 + 	) and are equal to

Hn(T) =
[


(
(1 + 	)ân − T

σ

√
n
)

− 

(
ân/(1 + 	) − T

σ

√
n
)]

·
[


(
(T − θ0)

σ

√
n
)]−1

.

From the obtained formula of the posterior reliability Hn(T) of the Bayesian estimate
θ̂n(T) = max{θ0(1 + 	), ân}, we derive the desired formula for the d-risk

RB(d) = E
{
1 − Hn(T | θ̂n(T) = d

}
of this estimate, which is true for all d ≥ θ0(1 + 	).

Really, since ân(T) is a monotonically increasing function of statistic T, then the d-risk
is defined by the substitution of d = ân(T) and the change of variable T in H̄n(T) by the
root T(d) of the equation

ân(T) = VT +
√
V2T2 + U2/n = d.

This equation is equivalent to V2T2 − 2dVT + d2 = V2T2 + U2/n, hence

T = T(d) = d2 − U2/n
2dV

.

To sum up, the substitutions of ân = d, T = T(d) into 1 − H̄n(T) provide the desired
expression for the d-risk of the Bayesian estimate, which is true for all d ≥ θ0(1 + 	).

The formula for the function RM(d), d ∈ R that gives the d-risk of the uniformly min-
imal d-risk estimate follows directly from the algorithm of this estimate construction and
monotonicity of the function t(a), a ∈ R. The proposition is proved. �

Figure 2 provides graphs for the d-risks of the Bayesian (solid line) and uniformly min-
imal d-risk (dotted line) estimates with the parameter values of the probability model
from the example given in Section 6. These functions are practically identical on the joint
part (d ≥ θ0(1 + 	)) of their domains. This is a corollary of the well known statement
on the asymptotic equivalence of the maximum likelihood, Bayesian and uniformly mini-
mal d-risk estimates (see [7–9]). Obviously, an application of the results from these articles
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Figure 2. Graphs of d-risk functions. (a) 	 = 0.1, n = 2. (b) 	 = 0.2, n = 2. (c) 	 = 0.1, n = 4. (d)
	 = 0.05, n = 14.

to our probability model requires a check of corresponding regularity conditions; how-
ever, in this case, everything is quite trivial because all three estimates are equivalent to
θ̂n = T(X) = X + λσ 2/n as n → ∞.

In connection with these graphical illustrations, it should also be noted that the support
of theBayesian estimate is [θ0(1 + 	),∞), while the support of theminimal risk estimate is
somehow wider: [θ0,∞). From the point of view of the theory of estimates with uniformly
minimal risk [5,6], d-risks of these estimates can be compared only on the intersection of
the supports of these distributions. The fact that the estimate with the uniformly minimal
risk has a bigger maximum value does not mean that it is worse than Bayesian. The max-
imum of the estimate with the uniformly minimal risk is achieved outside of the region
of the d-risk values for the Bayesian estimate; it is the best from the d-risk point of view
among all estimates with the distribution that have support equals to the interval [θ0,∞).
This remark plays an important role in the comparison of estimates by theminimal sample
size that guarantee the given constraint on the d-risk.
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4. The sample size that guarantees given constraints on the relative
accuracy and the d-risk of the estimate

Sample size planning is usually associated with the risk of a certain estimate, considering
it as a function of the sample size n. The minimal sample size that guarantees the given
accuracy and reliability of the estimate is defined as the smallest n for which the risk of the
employed estimate does not exceed the given constraint. There ismuch literature, including
monographs, devoted to this subject.We refer to one of the recentmonographs [10], which
considers myriad procedures of statistical inference. It also suggests methods for sample
size determination with the help of normal approximations for the estimate distribution
or test statistics without discussing mathematical aspects of the validity of using these
approximations. The literature cited in the monograph is not exhaustive, but is extensive;
it contains nearly a thousand references.

However, there is a different aspect to the problem of sample size planning. It is con-
nected to a definition of the necessary sample size as the smallest n for which exists the
guarantee procedure of statistical inference. As shown in article [4], the decision rules that
correspond to such critically minimal sample size should be minimax for the loss function
normed by the risk constraint. In our case of the mean value estimation with given con-
straints on the relative error and d-risk, such a rule does exist; it is the estimate with the
uniformly minimal d-risk.

Therefore, for the estimates with the distribution support that is the interval [θ0,∞),
the necessary sample size for the estimate of θ with the given constraint 	 on the rela-
tive error of the estimate and the constraint β on d-risk is defined as the smallest integer
n∗ = n∗(	,β), which satisfies the inequality

max
d≥θ0


[
(u2(d) − t(d))

√
n/σ

] − 
[
(u1(d) − t(d))

√
n/σ

]


(
(t(d) − θ0)

√
n/σ

) ≥ 1 − β ,

where u1 and u2 have the form (2).
The following lax and purely heuristic reasonings led to a surprisingly accurate closed

form formula for n∗.
Assign the value 1 to the normal distribution function in the denominator of the d-risk.

By this we only increase the d-risk. Exchange (1 + 	)−1 by the smaller 1 − 	, increasing
d-risk again. Make use of the fact that our numerical illustrations for the function t(d)
indicate the possibility of its exchange by d. Let d0 be the point where the maximum of the
d-risk function is achieved. After these simplifications and substitutions, the inequality for
n∗ determination takes the form

2
(
d0

	(1 + 	)
√
n

σ

)
− 1 ≥ 1 − β .

Finally, assuming that d0 = θ0, we obtain the desired approximation for the necessary
sample size as the smallest integer value of

ñ ≥
(

−1(1 − β/2)σ
θ0	(1 + 	)

)2

.

This formula has the same form as its counterpart in article [2], where the constraints
α were imposed on the classical risk function for parameter θ and the classical minimax
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Table 1. The minimal sample size needed for the guarantee of estimation.

	 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,16 0,17

n∗ 16 11 8 7 5 4 4 3 3 2 2
nB 14 10 7 6 4 4 3 3 2 2 1
ñ 14 10 7 6 4 4 3 3 2 2 1

estimate of θ was established. As in that article, we pay attention to the rapid increase of
the necessary sample size when θ0 approaches the value of zero.

We note once more that n∗ is the necessary sample size only for the d-guarantee pro-
cedures θ with the distribution support that equals the interval [θ0,∞). According to the
theory of estimates with the minimal d-risk [5,6] any other estimate θ will have a bigger d
only on the intersection of its distribution support with the interval [θ0,∞]. The minimal
sample size that provides its d-guarantee property of any estimate with a different support
of its distribution, can differ from n∗ in any direction. The Bayesian estimate takes values
only in the interval [θ0(1 + 	),∞), has the smallest d-risk in this interval (see Figure 2),
but has a different minimal sample size nB than n∗. The value nB is defined as the smallest
integer n that satisfies the inequality (see Proposition 3.1)

min
d≥θ0(1+	)

RB(d) ≤ β .

The closeness of the d-risk functions of this interval assures the same approximation ñ for
nB when the values of 	 are small. To confirm this, it is enough to repeat the arguments
similar to the derivation of the approximation ñ for n∗, first making sure that with the
accuracy up to O(	2), the functions V ∼ 1/2, U2 ∼ σ 2 and (d2 − U2/n)/(2dV) ∼ d for
n → ∞ (that is, if we neglect the value U2/n).

How accurately ñ serves as an approximation for n∗ and nB, can be seen by the values
presented in Table 1.

5. Sequential procedure for θ estimation

Let β be a fixed constant. A sequential procedure of the ‘First Crossing’ has been defined
in article [1] in the framework of the general problem of the statistical inference guarantee.
For our goal of θ estimation, this procedure is defined by the stopping time

ν = min{n : H(ân(T)) ≥ 1 − β}
with the subsequent decision for the parameter value with the help of the Bayesian esti-
mate (see formula (3)): θ̂ν = θ̂ν(T) = max{θ0(1 + 	), âν}. Therefore, the observations are
stopped when the random process{

Tn = X − λσ 2/n, n ≥ 1
}

reaches the boundary of the region {W(n), n ≥ 1}, which is defined as the solution of
the equation Hn(T) = 1 − β by T. After stopping the experiment at the step ν = n, the
Bayesian estimate θ̂n = max{θ0(1 + 	), ân} is calculated.

The graphical representation of the First Crossing procedure is given in Figure 3. This
figure illustrates the remarkable property of the suggested sequential procedure for θ
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Figure 3. The experiment continuation area with	 = 0.1 and	 = 0.05. The solid line is the stopping
boundaryW(n). The points are the result of process path modeling Tn. (a)	 = 0.1, β = 0.05. (b)	 =
0.05, β = 0.05.

estimation: as does its counterpart in article [3], it has the stopping time νB ≤ nB.We
discovered a similar phenomenon for the case of parameter estimation of different prob-
ability models; in particular for the success probability estimation of Bernoulli trials with
the quadratic loss function and prior Beta distribution. With this comes the assumption
that the First Crossing sequential procedure always has the stopping time ν for which
P(ν ≤ nB) = 1; that is, from the point of view of estimation sequential procedures, the
procedure with a fixed number of observations is the worst one because it requires the
largest sample size. At this moment, we do not have a rigorous mathematical proof of this
statement.

An interesting fact for practical application of the First Crossing procedures can be
noted from the shape of the region of continuation of observations for this procedure:
if the observed value of the statistic T appears to be too small or too large, then only one
observation for the guarantee estimate θ is required.

For the probability model parameters that correspond to the example considered in the
next section, the properties of the First Crossing procedure have been investigated by the
method of statistical simulations. We ran 105 iterations of the First Crossing procedure,
and for each iteration, the stopping time ν was recorded and the value of Bayesian esti-
mate calculated. The results of simulations are presented in Figures 3 and 4 as tables of the
relative frequencies of stopping the experiment at the corresponding steps.

The effectiveness of an sequential procedure is usually measured by the ratio of the nec-
essary sample size to the mean value of the stopping time of the procedure: E = n∗/Eν.
For our sequential procedure the mean value of the stopping time depends on β and 	

and approximately two times less than the necessary sample size. For the frequency data
of stopping times for the stopping times of our procedure presented in Figures 3 and 4, the
effectiveness values are E0.05 = 2.2 and E0.1 = 2.1, respectively.

6. The empirical counterpart of the Bayesian estimate

Practical application of the suggested estimation procedures is possible only if the true
values of the parameters σ 2, λ and θ0 are known. However, laboratories systematically
estimating θ for each incoming product for an analysis; usually have an archive of obser-
vations that consists of a sufficiently large numberN of samples Xi1, . . . ,Xin, i = 1, . . . ,N.
With such data, it is possible to estimate sufficiently accurate the variance σ 2 and θ0 of the
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Figure 4. Statistical experiment stopping frequencies for steps n = 1, 2, . . .. (a)	 = 0.1, β = 0.05. (b)
	 = 0.05, β = 0.05.

random variable of interest. As for the parameter λ of the prior distribution, its value is esti-
mated from the archive data by the standard methods of mathematical statistics, namely
the method of maximum likelihood or the method of moments.

To use these methods, one must find the marginal distribution of the sufficient statis-
tic X knowing its conditional normal (ϑ , σ 2/n) distribution and the prior two-parameter
exponential distribution of ϑ . The density function of X is located in the denominator of
the posterior density of ϑ and is equal to

pG(x) = λ exp
{
− n
2σ 2 (x2 − t2) + λθ0

}
·
[
1 − 

(
(θ0 − t)

√
n

σ

)]
, x ∈ R.

Obviously, finding the maximum point by λ of the likelihood function is computationally
cumbersome because of its complex relationship to this parameter. Nevertheless, the value
of λ can be simply estimated by the method of moments because

EX = λ

∫ ∞

θ0

θ exp{−λ(θ − θ0)} dθ = 1
λ

+ θ0.

Hence the estimates of θ0 and λ by the sample means X1, . . . ,XN reduced by the data
archive, have the form

θ̂0,N = min
1≤i≤N

Xi, λ̂N =
[
1
N

N∑
i=1

Xi

]−1

+ θ̂0,N .

However, it is possible to estimate the parameters θ0 and λ without using a data archive,
which will be shown by the following example.

7. An application of the d-guarantee procedure to real life data

Consider the described procedure applied to the problem of estimating the arsenic con-
centration in drinking water.
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Regulatory documents, used in everyday quality testing of drinking wanter, state
standards, ecological norms and regulations determine the mandatory requirements
for water quality (see Russian Federation State Standards GOSTZISO5725 − 6 and
SanPIN2.1.4.1074 − 0.1). Our consultations with fellow workers at the Department of
Applied Ecology at the Kazan Federal University and their recommendations for the usage
of the real data obtained in the laboratory at a particular water intake from Volga river,
allowed us to set the following values for the parameters of probability model.

Extensive archival data with everyday measurements of arsenic content show that with
large reliability (not less than 0.99), the value of arsenic content (mg/litre) lies within
0.01–0.05 with a clear tendency of the distribution skewness towards small values. The
value 0.05 is the maximum allowable concentration (MAC) of the arsenic, the value θ0 =
0.01 has been defined as the lower 99% tolerant limit, and besides this value practically
coincides with the smallest value for all sample data of the archive. Standard deviation
σ = 0.001 has been defined by theRussian Federation State StandardsGOSTZISO5725 − 6
(Section 6): 20% of the smallest content 0.01 equals 2σ .

Assuming that the intake quality level of the drinking water is not less than Qin =
0.99, we can derive the parlayer λ value of the prior distribution from the equation
exp{−λ(0.05 − 0.01)} = 0.99. In our case λ ≈ 100. Accuracy properties illustration for
the proposed estimation procedures and sample sizes were held for the reliability value
1 − β = 0.95 and two values 	 = 0.1 and 0.2.

Remark: It should be noted that for this particular problem, the constraint on relative
accuracy should be used in the following ‘nonsymmetric shape’

1
1 + 	1

<
ϑ

d
< 1 + 	2

with	1 � 	2 because the decision based on a small (acceptable) amount of arsenic in the
case when the water actually contains far more arsenic, causes more severe consequences
than the decision based on the amount that exceeds the true value of θ . All constructions
presented in our article can be easily extended to the case of such a loss function.

8. Concluding remarks

In this article, we obtained a solution to the statistical problem of a normal mean value
estimation with the prior knowledge of a positive small value of the estimated parameter.
The sample size is determined by the given constraints of the relative error and d-risk of the
estimate. The defining moment in the solution of this well studied problem is in the essen-
tially new approach to the definition of notion reliability and designing an estimate, which
is different from the classical and Bayesian estimates.We do not require a small probability
α for deviations (	) of an estimate (random variable or statistic) from the fixed (given)
value θ , but we ensure the guarantee probability 1 − β of the random parameter ϑ falling
into the given neighbourhood of the estimate value obtained by the statistical experiment.
This is the so-called d-posterior approach to the guarantee problem of statistical inference,
which was developed by statisticians at the Kazan University in the late 1970s.

In the article we provide the method and approximate formula for the minimal sample
size determination for which there exists a procedure that guarantees the required relative
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accuracy and ‘d-reliability’ 1 − β for the θ value decision. This method provides the value
of so-called ‘necessary sample size’ only for the estimates with the support that coincides
with the support [θ0,∞) of the prior distribution. The estimation procedure that corre-
sponds to this minimal sample size is obtained. A sequential d-guarantee procedure for θ

estimation is also suggested. The numerical illustrations show that the sample size (stop-
ping time) for the sequential procedure is always smaller than the minimal sample size for
the Bayesian guarantee estimation by the sample of a fixed size. The distribution of the
stopping time of the sequential procedure (the random sample size) is illustrated by using
data from the practical problem of estimating the arsenic content in drinking water. The
results of statistical simulation show that, in some cases, the gain in sample size may be
quite significant.

The results obtained in the article provide new directions for designing quality control
procedures and certifying manufactured products.
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